Cycle-time Reduction in Machining by Recursive Constraint Bounding
نویسندگان
چکیده
Modeling uncertainty in machining, caused by modeling inaccuracy, noise and process time-variability due to tool wear, hinders application of traditional optimization to minimize cost or production time. Process time-variability can be overcome by adaptive control optimization (ACO) to improve machine settings in reference to process feedback so as to satisfy constraints associated with part quality and machine capability. However, ACO systems rely on process models to de ne the optimal conditions, so they are still a ected by modeling inaccuracy and noise. This paper presents the method of Recursive Constraint Bounding (RCB2) which is designed to cope with modeling uncertainty as well as process time-variability. RCB2 uses a model, similar to other ACO methods. However, it considers con dence levels and noise bu ers to account for degrees of inaccuracy and randomness associated with each modeled constraint. RCB2 assesses optimality by measuring the slack in individual constraints after each part is completed (cycle), and then rede nes the constraints to yield more aggressive machine settings for the next cycle. The application of RCB2 is demonstrated here in reducing cycle-time for internal cylindrical plunge grinding. Presently a research associate at the Nat'l Inst. of Standards and Technologies ASME Member To whom all correspondence should be addressed. ASME Fellow
منابع مشابه
Energy Efficiency Analyses of Toolpaths in a Pocket Milling Process
This paper presents an approach to analytically determine the most energy efficient toolpath strategy in mechanical machining. This was achieved by evaluating the electrical energy requirement of the NC codes generated for the zag, zigzag, and rectangular contour toolpath strategies. The analytical method was validated by performing pocket milling on AISI 1018 steel with the considered toolpath...
متن کاملDevelopment of Design and Manufacturing Support Tool for Optimization of Ultrasonic Machining (USM) and Rotary USM
Ultrasonic machining (USM) is a mechanical material removal process used to erode holes and cavities in hard or brittle work pieces by using shaped tools, high-frequency and an abrasive slurry. This paper addresses the concept and development of an expert system (ES) for hard and brittle material, such as glass, quartz, diamond, carbides, semi conducting materials, ceramic and graphite which ca...
متن کاملOptimum Swept Angle Estimation based on the Specific Cutting Energy in Milling AISI 1045 Steel Alloy
Mechanical machining processes are common manufacturing strategies to re-shape materials to desired specification. The mechanistic approach has revealed the mechanics of the machining processes with various parameters determined. The aim of this work is to investigate the impact of swept angle optimization and their influence on the specific cutting energy in milling AISI 1045 steel alloy. This...
متن کاملDevelopment of Design and Manufacturing Support Tool for Optimization of Ultrasonic Machining (USM) and Rotary USM
Ultrasonic machining (USM) is a mechanical material removal process used to erode holes and cavities in hard or brittle work pieces by using shaped tools, high-frequency and an abrasive slurry. This paper addresses the concept and development of an expert system (ES) for hard and brittle material, such as glass, quartz, diamond, carbides, semi conducting materials, ceramic and graphite which ca...
متن کاملExperimental Investigation of the Pulse and Plasma Flushing Efficiency in Electrical Discharge Machining
This paper presents a study of the relationship between Electrical Discharge Machining (EDM) parameters on the EDM efficiency factors using a full factorial design, based on pulse on-time, duty cycle and tool polarity parameters in EDM machining of AISI H13 tool steel. The results show that, in positive polarity, the plasma flushing efficiency and pulse efficiency increase according to the puls...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000